Data-driven wavefield focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples
نویسندگان
چکیده
Standard imaging techniques rely on the single scattering assumption. This requires that the recorded data do not include internal multiples, i.e., waves that have bounced multiple times between reflectors before reaching the receivers at the acquisition surface. When multiple reflections are present in the data, standard imaging algorithms incorrectly image them as ghost reflectors. These artifacts can mislead interpreters in locating potential hydrocarbon reservoirs. Recently, we introduced a new approach for retrieving the Green’s function recorded at the acquisition surface due to a virtual source located at depth. We refer to this approach as data-driven wavefield focusing. Additionally, after applying source-receiver reciprocity, this approach allowed us to decompose the Green’s function at a virtual receiver at depth in its downgoing and upgoing components. These wavefields were then used to create a ghost-free image of the medium with either crosscorrelation or multidimensional deconvolution, presenting an advantage over standard prestack migration. We tested the robustness of our approach when an erroneous background velocity model is used to estimate the first-arriving waves, which are a required input for the datadriven wavefield focusing process. We tested the new method with a numerical example based on a modification of the Amoco model.
منابع مشابه
Data-driven Green’s function retrieval and imaging with multidimensional deconvolution: numerical examples for reflection data with internal multiples
Standard imaging techniques rely on the single scattering assumption. This requires that the recorded data do not include internal multiples, i.e. waves bouncing multiple times between layers before reaching the receivers at the acquisition surface. When multiple reflections are present in the data, standard imaging algorithms incorrectly image them as ghost reflectors. These artifacts can misl...
متن کاملFocusing inside an unknown medium using reflection data with internal multiples: numerical examples for a laterally-varying velocity model, spatially-extended virtual source, and inaccurate direct arrivals
Seismic interferometry is a technique that allows one to reconstruct the full response from a virtual source inside a medium, assuming a receiver is present at the virtual source location. We describe a method that creates a virtual source inside a medium from reflection data measured at the surface, without needing a receiver inside the medium and, hence, presenting an advantage over seismic i...
متن کاملData-driven Green’s function retrieval and application to imaging with multidimensional deconvolution
An iterative method is presented that allows one to retrieve the Green’s function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed information about the heterogeneities in themedium...
متن کاملSeismic reflector imaging using internal multiples with Marchenko-type equations
We present an imaging method that creates a map of reflection coefficients in correct one-way time with no contamination from internal multiples using purely a filtering approach. The filter is computed from the measured reflection response and does not require a background model. We demonstrate that the filter is a focusing wavefield that focuses inside a layered medium and removes all interna...
متن کاملCreating Virtual Sources Inside an Unknown Medium from Reflection Data - A New Approach to Internal Multiple Elimination
It has recently been shown that the response to a virtual source in the subsurface can be derived from reflection data at the surface and an estimate of the direct arrivals between the virtual source and the surface. Hence, unlike for seismic interferometry, no receivers are needed inside the medium. This new method recovers the complete wavefield of a virtual source, including all internal mul...
متن کامل